1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
   | for epoch in range(1, epochs + 1):          model.train()
      for batch_idx, (data, target) in enumerate(train_loader):         data, target = data.to(device), target.to(device)         optimizer.zero_grad()           output = model(data)         loss = F.nll_loss(output, target)           loss.backward()           optimizer.step()
          if batch_idx % log_interval == 0:             print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(                 epoch, batch_idx * len(data), len(train_loader.dataset),                 100. * batch_idx / len(train_loader), loss.item()))
           model.eval()       test_loss = 0     correct = 0     with torch.no_grad():           for data, target in test_loader:             data, target = data.to(device), target.to(device)             output = model(data)             test_loss += F.nll_loss(output, target, reduction='sum').item()              pred = output.argmax(dim=1, keepdim=True)              correct += pred.eq(target.view_as(pred)).sum().item()  
      test_loss /= len(test_loader.dataset)
      print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(         test_loss, correct, len(test_loader.dataset),         100. * correct / len(test_loader.dataset)))
   |