TensorFlow 2.0과 PyTorch 비교
TensorFlow 2.0 123import tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras import datasets Hyperparameter 1234567batch_size = 64learning_rate = 0.001dropout_rate = 0.7input_sh
TensorFlow 2.0 123import tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras import datasets Hyperparameter 1234567batch_size = 64learning_rate = 0.001dropout_rate = 0.7input_sh
Load Packages 1234import tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras import datasets Build Model 123456789101112131415161718192021222324252627input_shape = (28, 28, 1)nu
TensorFlow 공식 홈페이지에서 설명하는 Expert 버전을 사용해본다. Load Packages 1234import tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras import datasets 학습 과정 돌아보기 Build Model 12345678910111
Load Packages 1234import tensorflow as tffrom tensorflow.keras import layersfrom tensorflow.keras import datasets 학습 과정 돌아보기 Prepare MNIST Datset 1(train_x, train_y), (test_x, test_y) = datasets.m
Load Packages 12345import tensorflow as tfimport osimport matplotlib.pyplot as plt%matplotlib inline Input Image 1234567891011from tensorflow.keras import datasets(train_x, train_y), (test_x, test_y
Load Packages 123456import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tf%matplotlib inline 데이터 불러오기 TensorFlow 에서 제공해주는 데이터셋(MNIST) 예제 불러오기다. 12345678from tensorflow.keras import
Load Packages 12import numpy as npimport tensorflow as tf Tensor 생성 list -> Tensor 1234tf.constant([1, 2, 3])# Out<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 3])> tuple -> Te
TensorFlow 2.0 1.x에 비해 정말 쉬워졌다. Numpy Array와 호환이 쉽다. TensorBorad, TFLite, TPU 여전히 많은 사용자들이 사용한다. 상용 목적으로 주로 사용한다. PyTorch Dynamic Graph & Define by Run 쉽고 빠르며 코드가 간결하다. 빠르게 성장하고 있다. 커뮤니티가 많이